
Reducing Costs
and Improving

Performance
With Data

Modeling in
Postgres

Charly Batista

Databases run better with Percona

©2023 Percona | Confidential 3

Who am I?

I am Charly Batista
The PostgreSQL Tech Lead at Percona with a knack for turning

database queries into poetry! When not crafting SQL magic,
you'll find me trading database tips over caipirinhas in Brazil or
perfecting their chopstick skills in China. With a love for both
the binary world and the great outdoors, I’m equally at home
crunching numbers and scaling mountains. Buckle up for a
database adventure like no other – this DB guy is ready to
merge cultures and conquer queries with a dash of humor!

You can find me at https://www.linkedin.com/in/charlybatista

Blame ChatGPT for this
introduction!

©2023 Percona | Confidential 4

Overview -
What is this talk

about?

Let’s review
some concepts

- HDD/SSD,
DRAM and CPU

It then comes to
the end:

SummaryCache: What is
it and why you

should care

How PostgreSQL
stores data?

Thank you!

Agenda
This is what we’ll cover today

©2023 Percona | Confidential 5

What is this talk about?

This talk is about how computer stores and

work with data and how PostgreSQL does it

and the relationship to our data model

©2023 Percona | Confidential 6

What is this talk about?

This is what we’ll discuss here today:

● How a computer stores data

● How Postgres stores data

● What is cache and why it matters

● How the different data types impact in the data size

and caching

©2023 Percona | Confidential 7

What is this talk about?

We will then relate all the above to understand:

● How the bad design can hurt performance

● How the bad design can hurt your wallet

● Techniques to improve the design

● Examples

Note that we will use use expressions “block” and “page”

intertengely with the same meaning during this talk

Let’s review some
concepts
HDD/SSD, DRAM and CPU

©2023 Percona | Confidential 9

Memory architecture

Secondary storage

Main
memory

CPU
cache

CPU
Registers

V
ol

at
ile

N
on-V

olatileHigher capacity
Higher latency

Slower access time

Faster access
Lower capacity

©2023 Percona | Confidential 10

Memory architecture

● Memory is either volatile or non-volatile

● Primary memory is fast but volatile, small and expensive

● Secondary memory is cheaper and larger but non-volatile and

slow

● CPU has no direct access to secondary memory

©2023 Percona | Confidential 11

Memory architecture

● Memory can basically be accessed using:

○ Random Access Method

○ Sequential Access Method

○ Direct Access Method

©2023 Percona | Confidential 12
https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/

Disk Data access

©2023 Percona | Confidential 13

Disk Data access

● CPU doesn't have physical access to secondary storage

● Data in disk can only be read/written in blocks

● Most of the systems have 4kB block size

● Slow data manipulation

©2023 Percona | Confidential 14

Disk Data access

● HDD:

○ has moving parts

○ slower by orders of magnitude

○ random I/O is terrible slow

● SSD:

○ doesn’t have moving parts

○ random I/O isn’t as bad but still slow

©2023 Percona | Confidential 15

Disk Data access

● Enforcing Sequential I/O will improve performance

○ At Operating System level: less I/O to process

○ At the Storage level: less seek/queueing

Cache
What is it and why you should care?

©2023 Percona | Confidential 17

Cache

● A cache is a hardware or software component that stores

data so that future requests for that data can be served

faster [1].

● cache hit

● cache miss

● hit rate/ratio

1: https://en.wikipedia.org/wiki/Cache_(computing)

©2023 Percona | Confidential 18

Cache

● Writing policies

○ Write-through

○ Write-back

● Prefetch

1: https://en.wikipedia.org/wiki/Cache_(computing)

©2023 Percona | Confidential 19

Cache Lines and Cache Size

● The chunks of memory handled by the cache are the cache

lines

● Common cache line sizes are 32, 64 and 128 bytes

○ modern x86 CPU usually has 64 bytes cache line

● A cache can only hold a limited number of lines

©2023 Percona | Confidential 20

Cache Lines and Cache Size

● A 64 kilobyte cache with 64-byte lines has 1024 cache lines

● Accessing L1 cache typically costs 3-5 CPU clock cycles

● Accessing main memory has ~90ns, or ~250 clock cycles

latency

● Unaligned data has a higher cost to be processed

©2023 Percona | Confidential 21

Cache Lines and Cache Size

● Let’s say we have the below data structure or table:

{

 int id,

 bool enable,

 int parent,

 bool valid

}

Can you find the issue here?

©2023 Percona | Confidential 22

Cache Lines and Cache Size

Another chance?

https://swiftunboxed.com/internals/size-stride-alignment/

©2023 Percona | Confidential 23

Cache Lines and Cache Size

● Unaligned data can cause padding

● Padding adds to the cost for the data to be processed

https://swiftunboxed.com/internals/size-stride-alignment/

How PostgreSQL stores
data?
Heap files

©2023 Percona | Confidential 25

File Organization

There are many ways to organize files and most common are:

● B+ Tree File Organization

● Clustered File Organization

● Hash File Organization

● Heap File Organization

● ISAM (Indexed Sequential Access Method)

● Sequential File Organization

PostgreSQL uses Heap File Organization

©2023 Percona | Confidential 26

Heap File

● One of the simplest form of file organization

● Unordered set of records stored on pages

● Insert efficient

○ New records are inserted at the end of the file

● No sorting or ordering of the records can be expected

©2023 Percona | Confidential 27

Heap File

● Once the page is full, next record is stored in a new page

● The new page is logically the next closer page

● The new page can be physically located anywhere in the disk

● Deletion is accomplished by marking records as "deleted"

● Update is done by: “delete” the old record and insert the new

one

©2023 Percona | Confidential 28

Heap File

https://www.tutorialcup.com/dbms/heap-file-organization.htm

©2023 Percona | Confidential 29

Heap File in Postgres

● The tables are heap files

● Each heap file has a limit of 1GB

● Meaning that:

○ Each table has a primary heap disk file

○ When growing more than 1GB other files are created

©2023 Percona | Confidential 30

Heap File in Postgres

● It’s divided into pages (or blocks) of fixed length

● The default page size is 8 KB

○ It can only be changed at compilation time

● In a table, all the pages are logically equivalent

● A row can be stored in any page

©2023 Percona | Confidential 31

Heap File in Postgres

©2023 Percona | Confidential 32

Page Layout

● A page is divided into:

○ PageHeaderData: The first 24 bytes of each page is a

page header

○ ItemIdData: Array of item identifiers (line pointer)

pointing to the actual items

©2023 Percona | Confidential 33

Page Layout

○ Free space: The unallocated space used for new

ItemIdData and new Items

○ Items or heap tuple: The actual items (rows) themselves

○ Special space: Holds index access method specific data.

■ Empty in ordinary tables

©2023 Percona | Confidential 34

Page Layout

https://stackoverflow.com/questions/59861645/postgres-and-tables-internal-organization

lower pointer

upper pointer

©2023 Percona | Confidential 35

Table Row Layout

● All table rows are structured in the same way:

○ Fixed-size header (23 bytes on most machines), followed

by an optional null bitmap

○ An optional object ID field

○ The user data

○ The user data begins at the offset indicated by t_hoff

field in the header

©2023 Percona | Confidential 36

Table Row Layout

○ The value of t_hoff must always be a multiple of the MAXALIGN

distance for the platform

○ The field t_infomask in the header defines if the null bitmap is

present

○ If the null bitmap is present it begins just after the fixed header

○ The null bitmap occupies enough bytes to have one bit per

data column

○ When the bitmap is not present, all columns are assumed

not-null

©2023 Percona | Confidential 37

Table Row Layout

Torsten Grust
Universitat Tubingen, Germany

©2023 Percona | Confidential 38

TOAST

The Oversized-Attribute Storage Technique

● PostgreSQL uses a fixed page size (commonly 8 kB)

● PostgreSQL does not allow tuples to span multiple pages

● Large field values are stored outside of the heap table in

separated files

● They are compressed and broken up into multiple physical

rows outside

©2023 Percona | Confidential 39

TOAST

● The technique is affectionately known as TOAST

● Not all data types support TOAST

● Each table that is created has its own associated (unique)

TOAST table

©2023 Percona | Confidential 40

TOAST

● How does it work?

○ When a row is "too large" (> 2KB by default), the TOAST

mechanism attempts to compress any wide field values;

○ If that isn't enough to get the row under 2KB, it breaks up the

wide field values into chunks that get stored in the

associated TOAST table;

○ Each original field value is replaced by a small pointer that

shows where to find this "out of line" data in the TOAST table;

©2023 Percona | Confidential 41

Data Alignment and Padding

● To efficiently performs read/write to memory, the CPU needs

aligned data

● Postgres is designed to have an internal natural alignment

of 8 bytes

● Every data type in PostgreSQL has a specific alignment

requirement

©2023 Percona | Confidential 42

Data Alignment and Padding

● The typalign attribute in pg_type describes the required

alignments:

○ c = char alignment, i.e., no alignment needed

○ s = short alignment (2 bytes on most machines)

○ i = int alignment (4 bytes on most machines)

○ d = double alignment (8 bytes on many machines, but by

no means all)

©2023 Percona | Confidential 43

Data Alignment and Padding

● Consecutive fixed-length columns of differing size may need

be padded with empty bytes

● It is possible to define table columns in an order that

minimizes padding

Reference: https://www.postgresql.org/docs/current/catalog-pg-type.html

©2023 Percona | Confidential 44

Data Alignment and Padding

CREATE TABLE t_queue_item_bad (
 item_type int2,
 q_id int8 not null,
 is_active boolean,
 q_item_id int8,
 q_item_value numeric,
 q_item_parent int8
);

Say we have a table with the below
structure

Note how the fields are organized...

IN
SE
RT
 I
NT
O
t_
qu
eu
e_
it
em
_b
ad

 S
EL
EC
T

 (
ra
nd
om
()
 *

 1
25
):
:i
nt
,

--
 i
te
m_
ty
pe

 (
ra
nd
om
()
 *

 9
99
99
):
:i
nt
,

--
 q
_i
d

 (
(r
an
do
m(
)

*
99
9)
::
in
t
%
2
=
0)
,
--
 i
s_
ac
ti
ve

 i
,

--
 q
_i
te
m_
id

 (
ra
nd
om
()
 *

 9
99
):
:i
nt
,

--
 q
_i
te
m_
va
lu
e

 (
ra
nd
om
()
 *

 9
99
):
:i
nt

--
 q
_i
te
m_
pa
re
nt

 F
RO
M
ge
ne
ra
te
_s
er
ie
s(

1,
 1
00
00
00
)
AS
 i
;

We then insert 1
M rows:

CREATE TABLE t_queue_item_good
AS

 SELECT q_id,

 q_item_id,

 q_item_parent,

 item_type,

 is_active,

 q_item_value

 FROM t_queue_item_bad;

We then create another table, same structure,

different column order

The size difference is over 25% in this example!!

©2023 Percona | Confidential 45

What are the implications?

Sometimes even tiny changes can make a huge impact

©2023 Percona | Confidential 46

What are the implications?

©2023 Percona | Confidential 47

What are the implications?

©2023 Percona | Confidential 48

What are the implications?

©2023 Percona | Confidential 49

What are the implications?

©2023 Percona | Confidential 50

What are the implications?

©2023 Percona | Confidential 51

What are the implications?

©2023 Percona | Confidential 52

What are the implications?

This is what we found in this sysbench TPC-C like test:

● Average 19% disk space reduction

● Average 8.4% overall performance improvement

○ Write 8.2% in avg

○ Reads 8.5% in avg

● Reduction in latency by an average of 15%

Keep in mind that it was a small dataset and only 5min warm

up queries for 10min test each round!

It then comes to the
end
Summary

©2023 Percona | Confidential 54

Summary

● Postgres stores its data in heap files

● The file is divided in blocks of 8kB each

● The data has no order

● Deleting a record doesn’t remove it but mark as removed

● Postgres can insert new record in the end of the file or in any

free space

● Updating a row does a “delete”+”insert” operation

©2023 Percona | Confidential 55

Summary

Every data type has its

alignment requirement

and can cause padding!

percona.com

Questions?

percona.com

THANK YOU!
https://www.linkedin.com/in/charlybatista/

